Exercise 15

A roast turkey is taken from an oven when its temperature has reached $185^{\circ} \mathrm{F}$ and is placed on a table in a room where the temperature is $75^{\circ} \mathrm{F}$.
(a) If the temperature of the turkey is $150^{\circ} \mathrm{F}$ after half an hour, what is the temperature after 45 minutes?
(b) When will the turkey have cooled to $100^{\circ} \mathrm{F}$?

Solution

Assume that the rate of decrease of the turkey's temperature is proportional to the difference between the turkey's temperature and the surrounding temperature T_{s}.

$$
\frac{d T}{d t} \propto-\left(T-T_{s}\right)
$$

The minus sign is included so that when the surroundings are cooler (hotter) than the turkey, $d T / d t$ is negative (positive). Change this proportionality to an equation by introducing a positive constant k.

$$
\frac{d T}{d t}=-k\left(T-T_{s}\right)
$$

To solve this differential equation for T, make the substitution $y=T-T_{s}$.

$$
\frac{d T}{d t}=-k y
$$

Differentiate both sides of the substitution with respect to t to write the derivative in terms of y : $\frac{d y}{d t}=\frac{d}{d t}\left(T-T_{s}\right)=\frac{d T}{d t}$.

$$
\frac{d y}{d t}=-k y
$$

Divide both sides by y.

$$
\frac{1}{y} \frac{d y}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln y=-k
$$

The function you take a derivative of to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln y=-k t+C
$$

Exponentiate both sides to get y.

$$
\begin{aligned}
e^{\ln y} & =e^{-k t+C} \\
y & =e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant A for e^{C}.

$$
y(t)=A e^{-k t}
$$

Now that the differential equation has been solved, change back to the original variable T, the turkey's temperature.

$$
T-T_{s}=A e^{-k t}
$$

As a result,

$$
T(t)=T_{s}+A e^{-k t}
$$

Since the room temperature is $75^{\circ} \mathrm{F}, T_{s}=75$.

$$
T(t)=75+A e^{-k t}
$$

Use the fact that the turkey's initial temperature is $185^{\circ} \mathrm{F}$ to determine A.

$$
185=75+A e^{-k(0)} \quad \rightarrow \quad A=185-75=110
$$

Consequently,

$$
T(t)=75+110 e^{-k t} .
$$

Part (a)
Use the fact that the temperature of the turkey is $150^{\circ} \mathrm{F}$ after half an hour, or 30 minutes, to determine k.

$$
\begin{gathered}
150=75+110 e^{-k(30)} \\
75=110 e^{-30 k} \\
\frac{75}{110}=e^{-30 k} \\
\frac{15}{22}=e^{-30 k} \\
\ln \frac{15}{22}=\ln e^{-30 k} \\
\ln \frac{15}{22}=(-30 k) \ln e \\
k=-\frac{\ln \frac{15}{22}}{30} \approx 0.0127664 \text { day }^{-1}
\end{gathered}
$$

Therefore, the turkey's temperature is

$$
\begin{aligned}
T(t) & =75+110 e^{-k t} \\
& =75+110 e^{-\left(-\frac{\ln \frac{15}{22}}{30}\right) t} \\
& =75+110 e^{\ln \left(\frac{15}{22}\right)^{t / 30}} \\
& =75+110\left(\frac{15}{22}\right)^{t / 30},
\end{aligned}
$$

and the temperature after 45 minutes is

$$
T(45)=75+110\left(\frac{15}{22}\right)^{45 / 30} \approx 136.929^{\circ} \mathrm{F} .
$$

Part (b)

To find when the turkey will have cooled to $100^{\circ} \mathrm{F}$, set $T(t)=100$ and solve the equation for t.

$$
\begin{gathered}
T(t)=100 \\
75+110\left(\frac{15}{22}\right)^{t / 30}=100 \\
110\left(\frac{15}{22}\right)^{t / 30}=25 \\
\left(\frac{15}{22}\right)^{t / 30}=\frac{25}{110} \\
\ln \left(\frac{15}{22}\right)^{t / 30}=\ln \frac{25}{110} \\
\left(\frac{t}{30}\right) \ln \frac{15}{22}=\ln \frac{5}{22} \\
t=\frac{30 \ln \frac{5}{22}}{\ln \frac{15}{22}} \approx 116.055 \text { minutes }
\end{gathered}
$$

